

Facultad de Ciencias del Mar y Ciencias Ambientales

ERASMUS+ Capacity Building – ScolaMAR Project

SCIENTIFIC CONFERENCE ON COASTAL RISKS: RISKS FOR SOCIETIES' FACING ENVIRONMENTAL CHANGES VERSUS RISKS FOR NATURE UNDER HUMAN PRESSURE

> (April 23-24, 2019) Faculty of Sciences, University Mohammed V Rabat

Response to coastal erosion: examples from Spain and Italy

Prof. Giorgio Anfuso Dpto Ciencias de la Tierra Facultad de Ciencias del Mar y Ambientales Polígono Río San Pedro s/n, 11510 Puerto Real (Cádiz), España. E-mail: giorgio.anfuso@uca.es

Coastal Erosion

Effects of North Sea storm in 1953 in The Netherlands

500 km defences damaged

2000 km² flooded

Coastal flooding
1835 human deaths

New Orleans – Katrina 2005

• 72,000 evacuated

Practical recommendations - we have to answer to following questions:

- Where does erosion occur?
- Why does erosion occur there?
- Which values are at risk?
- What should be done to safeguard these values?

• Where does erosion occur?

Observations, information from local inhabitants, aerial photographs, maps, etc.

• Why does erosion occur there?

Negative sedimentary budget. Reasons:

- Longshore transport
- Offshore transport
- Accumulation of sediments up-drift of human structures
- Reduction of fluvial supplies
- Erosion due to specific currents

• Which values are at risk?

Erosion is a natural process and problems rise when human structures are at risk:

- Human life
- Land of economic value
- Areas of cultural and/or ecologic interest

• What should be done to safeguard these values?

- Do nothing
- Accommodation
- Relocation
- Protection

Do nothing:

- Expensive measures
- Low economic value

Los Muchachitos

SCENARIO 1 Managed retreat - abandonment of current line of sea defence protecting land in low-value use

- Salt marshes are not able to migrate landward because defenses -"coastal squeeze" (Doody 2004)
- The present defense is abandoned

Theoretical framework for erosion management

Change land use

Crops

ACCOMMODATE

Buildings

Wetlands

Regulate building development

Strike balance between preservetion and development

Relocation:

- Is economically advantageous
- We move inland roads, houses, etc.

SCENARIO 2

Partial set-back onto land with existing conservation interest

MUDFLAT SALTMARSH FLOOD GRAZING ARABLE CAPITAL BANK MARSH INTENSIVE USE

Theoretical framework for erosion management

Relocation:

Delta Río Magdalena Mapa Brigadier Fidalgo, fecha: 1792 -1812

Protection:

- Land use of great economic value
- Different types of intervention

SCENARIO 3

Maintenance of existing defences on muddy coasts protecting low-lying land in high-value use

SCENARIO 4 Maintenance of existing defences on sandy coasts protecting low-lying land in high-value use

SCENARIO 5 Management of eroding soft cliffs fronting land in high-value use

What about public opinion?

- They generally prefer protection
- We have to convince public opinion that the solution depends on several things....if we are not able a "political" solution is preferred versus a "technical" one (in this case straw)

Photo: Fige-finger, Ireland; action to protect dunes. Copper & McKenna (2008). Working with natural processes: the challenge for coastal protection strategies. The Geographical Journal, 174 (4): 315-331. **Response to coastal erosion**

Protection:

- Hard solution
- Soft solution

Hard structures

- Seawalls
- Revetments
- Groins and Jetties
- Breakwaters

Soft solutions

Nourishment

Borrow sand can be deposited on the..

Dune

Dry beach

Dry beach and foreshore

Longshore bar

NOURISHMENT STUDY CASE: SANTA MARIA DEL MARE (CADIZ)

The example is representative of all nourishment works on the

Atlantic side of Cadiz Province

Protection and Nourishment works

- Different groins and a submerged breakwater were emplaced
- Several nourishments, 300,000 m³ in 1999 and in 2001 a new nourishment 80.000 m³
- Enlarge the dry beach

Nourishment works

Nourishment works

- A great artificial berm was formed
- The initial dissipative profile was transformed into a reflective one
- Borrow sand was coarser than natural one but with many shell fragments (20%)

Morphology

PROVINCE OF CADIZ (SW SPAIN)

Beach characteristics	La Costilla	Fuentebravia	Aculadero	La Barrosa
Dry beach (m)	5	52	0	60 [#]
Foreshore (m)	85	30-40	5	120-130
Slope (%)	1-2	3		2
Profile	Dissip.	Dissip.		Dissip.
Granulometry (mm)	0.35	0.20	0.47	0.20
Nourishment	9/96	9/96	9/96	9/94
Volumes (m ³)	95000	135000	160000	460000
Volum per profile per m³/m	113	129	111	652 [#]
Length (m)	500	700	750	800
Increase of dry beach (m)	55	22	47	100 [#]
Foreshore slope (%)	5	4.7	7.8	5
New beach profile	Reflective	Inter. Reflec.	Inter.Reflec	Reflective
Sand source	Port	Port	Port	Offshore
Granulometry of borrow (mm)	0.36	0.22	0.31	0.26

Nourished beach evolution

 $\mathbf{V}(\mathbf{t}) = \mathbf{y}_0 + \mathbf{a}\mathbf{e}^{-\mathbf{k}\mathbf{t}}$

Mediterranean Andalusia littoral

- Hard structures were emplaced from the 70s
- In recent decades they were removed or reshaped and nourishment carried out

Decadal evolution of coastline armouring along the Mediterranean Andalusia littoral (South of Spain)

Giorgio Manno ^a, Giorgio Anfuso ^{b,*}, Enrica Messina ^a, Allan Thomas Williams ^{c, d}, Miguel Suffo ^e, Vincenzo Liguori ^a

Data from the Mediterranean coast of Andalusia

Fig. 2. Total number per year of ports, groins, breakwaters and seawalls/revetments. The number of structures does not coincide with data presented in Table 2 that shows coastal structures length per sectors, which often is the sum of different structures.

Coastal structures' evolution at Marbella

Location

 Andrew & Cosper Dmin #, Pillery Editors

Links Brokelikkers

Pitfalls of Shoreline Stabilization

Selected Case Studies

2 Springer

13. Bad practice in erosion management: the Southern Sicily case study

Anfuso, G., Martínez, J.A. y N. Rangel

Evolution 1967-1999 at Scoglitti harbour – a common situation close to port structures

Last works in 2010, 10 mil of euro

Évolution du port de Scoglitti

N

150 300

Evolution 1967-1999 at Scoglitti harbour – a common situation close to port structures

220 m, small dunes migrating landwards

Downdrift Erosion

Donnalucata

Donnalucata – Filippa-Arizza

1977

Donnalucata – P. Bruca

Great impact of ports: construction of breakwaters

Structures shift erosion downdrift and new structures are emplaced....domino effect

i16!

Beach nourishment at Caucana (Ragusa Province) 70,000 cubic meters of gravel from land and small structures

Location

Shore protection projects Enzo Pranzini University of Florence epranzini@unifi.it

Cala Gonone, Sardegna (1994-1996)

New beach creation with quarried granules, stabilized by seminatural shoals with rounded stones

Cala Gonone, Sardegna (1994-1996)

Original

1 yr later

Marina di Pisa, Italy

Marina di Pisa (2007)

Detached breakwater lowering at -0.5 m Gravel beach creation

Cecina Mare, Livorno (1990)

Small beach nourishment and extension of two old groins with short submerged segments.

Macchiatonda, Grosseto (2009)

Geotextile submerged groins. Beach nourishment with nearshore sand.

Cecina Mare, Livorno (2012-2015)

Improvement of the old 1990 project.

Groins reshaping and extension with submerged segments.

Nourishment with sand coming from the excavation of a basin.

Alassio, Italy

Marina di Massa, Italy

Marina di Massa, Tuscany

Geotextile tubes: Diameter 2.5 m = $300 \notin$ /m (+ sand cost) $4.0 \text{ m} = 350 \notin$ /m $5.0 \text{ m} = 450 \notin$ /m

