Assessing land use scenarios and climate change related risks in the Italian coast: an integrated approach supporting climate change adaptation

Critto A., Torresan S., Furlan E., Dalla Pozza P., Michetti M., Marcomini A.

Scientific conference on Coastal Risks: risks for societies' facing environmental changes versus risks for nature under human pressure

April 23-24, 2019 Faculty of Sciences, University Mohammed V Rabat

Co-funded by the Erasmus+ Programme of the European Union

Euro-Mediterranean Centre on Climate Change

Website: www.cmcc.it

Euro-Mediterranean Centre

on Climate Change

Partners:

National Institute on Geophysics and Volcanology (INGV) University of Salento (UNILE) Centro Italiano di Ricerche Aerospaziali (CIRA) University Ca' Foscari Venice

Eni Enrico Mattei Foundation (FEEM) University of Sannio

University of Sassari

University of Tuscia

Associated centers:

Mediterranean Agronomy Institute of Bari Pure and applied mathematics Research Centre (CRMPA) SPACI Consortium

National Institute of Oceanography and Experiment Geophisics (OGS) Abdus Salam International Centre for Theoretical Physics (ICTP)

http://www.cmcc.it/it/

Focal Point IPCC in Italy:

CMCC (Centro Euro-Mediterraneo sui Cambiamenti Climatici)

https://www.cmcc.it/web/public/IPCC-Italia

CMCC SCIENTIFIC DIVISIONS:

- OPA Ocean Predictions and Applications (Lecce): models and methods for marine operational forecasting.
- ODA Ocean modelling and Data Assimilation (Bologna): numerical models for global marine forecasts and the study of the interactions between the physical and biogeochemical processes of oceans.
- CSP Climate Simulations and Predictions (Bologna): models of the Earth system, climate predictions and projections of climate change from seasonal to decadal scales.
- ASC Advanced Scientific Computing (Lecce): optimization of models on emerging computational structures and advanced analysis of large volumes of data.
- IAFES Impacts on Agriculture, Forests and Ecosystem Services (Viterbo, Sassari): diagnosis and prediction of the impacts on agriculture and terrestrial ecosystems, natural and semi-natural.
- **REMHI REgional Models and Hydrogeological Impacts (Capua):** hydrological impacts related to climate change and dynamic/statistical downscaling techniques.
- RAAS Risk Assessment and Adaptation Strategies (Venice): methods for the analysis of environmental impacts and risks related to climate change and natural hazards, and development of strategies and plans for adaptation to climate change.
- ECIP Economic analysis of Impacts and Policy (Venice): translate into economic values climate scenarios, for designing the most appropriate policies to mitigate emissions and for adaptation to climate change.

SAVEMEDCOASTS

Aims to respond to the need of people and assets prevention from natural disasters and sea level rise in Mediterranean coasts

sea level rise scenarios along the mediterranean coasts

http://www.savemedcoasts.eu

DG-ECHO (European Civil Protection and Humanitarian Aid Operations)

Provide guidance and criteria for risk and vulnerability assessment

Development of GISbased maps and indicators ranking the coastal areas at higher risks

Improve risk governance and raise community awareness towards the impacts of climate change and sea level rise

2. Case study area

A coastline of 8.970 km Including the islands

> 28,4 % of the population living along the coasts Most densely populated areas of the country

63 out of 107 provinces located along the coast 14.3 % of the national surface

Natura2000 sites cover 10.353,75 km²

(23,3% of the coastal area)

Unique ecosystems and habitats 2314 ZSC

Multiple methodologies and tools to evaluate coastal vulnerability :

Ramieri et al. (2011); Zanuttigh et al. (2013); Torresan et al. (2016)

3. Methodology and data

Adapted from the multi-scale CVI by McLaughling & Cooper (2010)

Sub-index

Sub-index

3. Methodology and data

RCP 8.5: "Worst case scenario"; high demographic growth, low innovation, absence of mitigation policies **SSP 3**: high challenges for mitigation and adaptation; little progress in reducing resource consumption and fossil fuel dependency, in addressing local environmental issues; strong environmental degradation in some region. Low population growth in industrialized countries and higher in developing ones

Climate Forcing: Extreme Sea Level scenarios (ESL)

ESL = RSLR + (tide) + (ss-w)						
<u>Scenarios:</u>	Historical RCP 4.5 RCP 8.5					
Grid resolution:	0.2° (~ 11 km)					
Temporal coverage:	Baseline: 1969-2004 Future: decades among 2039- 2049 timeframe					

Mean ESL [m]			RP 5	RP 10	RP 20	RP 50	RP 100	RP 200	RP 500	RP 1000
BASELINE		MIN	0.82	0.89	0.95	1.00	1.03	1.06	1.10	1.12
		MEAN	1.17	1.26	1.33	1.43	1.51	1.58	1.67	1.74
		MAX	2.10	2.34	2.59	2.94	3.22	3.52	3.93	4.27
	RCP 4.5	MIN	1.03	1.10	1.16	1.20	1.24	1.27	1.30	1.33
49		MEAN	1.37	1.46	1.53	1.63	1.71	1.78	1.87	1.95
- 204		MAX	2.35	2.59	2.84	3.18	3.46	3.75	4.16	4.49
039	RCP 8.5	MIN	1.03	1.13	1.19	1.24	1.27	1.31	1.34	1.37
2		MEAN	1.37	1.49	1.57	1.67	1.75	1.82	1.92	1.99
		MAX	2.35	2.66	2.91	3.27	3.55	3.85	4.26	4.60

Baseline - 100 years Return Period

(Vousdoukas et al., 2017)

Land-use related indicators (i.e. land roughness and land use pattern) are based on the recent LULC maps developed by using the **LULC-CMCC model** (Santini and Valentini, 2011)

protected areas, transition matrix and neighboring influence between land use classes

Economic indicators are based on GDP projections developed by Murakami & Yamagata, (2016)

<u>Temporal coverage:</u> Baseline scenario **2010** Future scenario **2050**

Selected socio-economic pathways: **SSP3**

GDP tot 2010: 1641 billion US\$

Social indicators developed based on data collected and modelled by ISTAT, 2001 and 2008

<u>Temporal coverage:</u> Baseline scenario **2001** (census data) Future scenario **2051**

3. Methodology and data

GIS-based physical, environmental and socio-economic indicators spatially evaluated by:

Aggregating information at the **provincial scale** (nuts3 level) based on:

- Percentage
- Mean values

Reclassification of variables according to their capacity to determine detrimental changes to coastlines (1 - 5)

3. Methodology and data

			1	Score							
Variable	Unit	/ery low		Low	Moderate		High	Very high			
			Racad on	cconarios	3		4	5			
		/ .		scenarios in	dicators						
Extreme Sea Levels (ESL)	m	de	eveloped by	Vousdoukas et	1.6 – 2.2		2.2 – 2.8	> 2.8			
	J		al., 4	2017 <mark>in</mark>	dicators						
	%	Les	han 20% of the		Between 20% and	60%		More than 60% of the			
Shoreline evolution trend		shore	he is in erosion	/	of the shoreline i	is in	/	shoreline is in erosion or			
Shoreline evolution trend		or in	accretion (per		erosion or in accr	etion		in accretion (per region)			
			region)		(per region)			In accretion (per region)			
Distance from shoreline	m		> 4500	4500 - 2100	2099 - 900		899 - 300	< 300			
Coastal slope	%		> 1/10	1/10 - 1/20	1/20 - 1/30		1/30 - 1/50	1/50 - 1/100			
Elevation	m		> 30	20 to < 30	10 to < 20		5 to < 10	< 5			
Geological coastal type	%	> 70% erodi	% of "likely non- ible segments"	1	"likely non-erodible segments" between 40% and 70%		/	< 40% of "likely non- erodible segments"			
Land roughness	/		rban areas	Forest and water bodies	Shrub land, grass sparse vegetati	land, ion	Agriculture	Bare areas			
Conservation designation	/		Absent		European internat	tional		National			
Coastal protection structures	%	> 50	% of pr	ased on scenarios	21.30% of protection coast	cted	5-20% of protected coast	< 5% of protected coast			
			dev	veloped by Santini	81						
Population < 5 years	/				1 - 2164	4	21645 - 35733	> 35734			
Population > 65 years	/		< 41	valentini, 2011	<mark>9 - 76078</mark>	8	76079 - 106784	> 106785			
				Economic indi	cators	_/	Based on scenarios developed				
Gross domestic product - GDP	¢		> 21000	31000 25000	24000 1700		by Murakami &	Yamagata,			
Land use pattern	!	W marsl spar area	ater bodies, /bog and moor, sely vegetated as, bare rocks	Natural grasslands, coastal areas	Forest		2016 Agriculture	Urban and industrial infrastructure			

Based on scenarios developed by ISTAT, 2008

National - Coastal Vulnerability Index Adapted from the multi-scale CVI by McLaughling & Cooper (2010)

Sum of the values of the relative variables Normalization of the resulting output elaborating it as percentage of the range of scores possible (maximum and minimum)

Coastal Forcing (CF) sub-index = $\{[(sum of CF indicators) - 1]/4\} \times 100$

Environmental (Env) sub-index = {[(sum of Env indicators) – 9]/36} x 100

Social (S) sub-index = {[(sum of S indicators) -1]/4}x 100

Economic (Econ) sub-index = $\{[(sum of Econ indicators) - 2]/8\} \times 100$

Average of the four sub-indices values

CVI = (Env sub-index + CF sub-index + S sub-index + Econ sub-index) / 4

5. Conclusions

Implementation of social and economic projections to better investigate the **interconnections of climatic hazards with changes in social and economic systems**, as well as their relationship with the surrounding environment.

- Adaptable to different spatial scales of analysis and geographic context, integrating different data at higher resolutions
- Useful to easily **communicate and translate knowledge** between the science and practitioners interfaces and to be implemented for national adaptation policies

- **Evaluation of uncertainty** by integrating climate, land use and economic social scenarios from different assumptions/models
- Lack of **temporal coherence** among the different scenarios for all the indicators
- Low spatial resolution of economic data not supporting the evaluation of economic dynamics of coastal areas

Co-funded by the Erasmus+ Programme of the European Union

Thanks for your attention !

critto@unive.it